Design of Expert System for Decision Making in Materials Purchasing

  • Carlos Alonso Torres Navarro
  • Javier Andrés Córdova Neira


The aim of this research was to verify the feasibility of integration between inventory theories and expert systems theories by designing an information system based on knowledge to support the decision making process in the logistics and supply area of a leading forestry company in Latin America. The methodology used consisted in a review of scientific publications, accessed online, on inventory models, multiple criteria ABC classification criteria, and identification of the components of expert systems based on knowledge. The results permit having an expert system design supported by Excel spreadsheets, macro programming in Visual Basic, and interaction with an information system on entrepreneurial resource planning. The main conclusions indicate that it is feasible to integrate between the theory of inventories, the use of a multiple criteria ABC classification with the theory of expert systems based on tacit and explicit type knowledge and, additionally, it is possible to achieve a reduction of 40% of the working capital retained in inventories


Download data is not yet available.

Author Biographies

Carlos Alonso Torres Navarro
Profesor Investigador Departamento de Ingeniería Industrial,Director Diplomado en Ingeniería Industrial,Universidad del Bío-Bío, Concepción, Chile.Licenciado en Ciencias de la Ingeniería,  Ingeniero Civil IndustrialUniversidad de Santiago de Chile, Santiago, Chile. E-mail:
Javier Andrés Córdova Neira
Ingeniero  de Planificación de Abastecimiento en Farmacias, Cruz Verde S.A., Santiago, Chile.Ingeniero Civil Industrial, Licenciado en Ciencias de la Ingeniería. Universidad del Bío-Bío, Concepción, Chile.E-mail:
How to Cite
TORRES NAVARRO, Carlos Alonso; CÓRDOVA NEIRA, Javier Andrés. Design of Expert System for Decision Making in Materials Purchasing. Cuadernos de Administración, [S.l.], v. 30, n. 52, p. 20-30, jan. 2015. ISSN 2256-5078. Available at: <>. Date accessed: 18 feb. 2018. doi:


logistics and supply, inventory models, multiple criteria ABC, expert system