Adoption of Mobile Banking by Microentrepreneurs at the Bottom of the Pyramid


The use of mobile phones has increased globally, offering developing countries the opportunity to improve financial inclusion through mobile banking. However, mobile banking has been little adopted by microentrepreneurs at the bottom of the pyramid, and studies that explain this phenomenon is incipient. Therefore, this study aims to establish factors that influence mobile banking adoption by microentrepreneurs, from the Theory of Planned Behavior (TPB), extended to the relative advantage and perceived risk. Using a sample of 101 microentrepreneurs at the bottom of the pyramid, our findings confirmed that attitude, subjective norms, behavior control, and relative advantages positively affect the appropriation of mobile banking. Thus, banks and mobile services providers can focus on these critical factors to increase the mobile banking adoption rate.



Download data is not yet available.


Author Biographies

, Universidad del Valle

Adjunct Faculty Member, Faculty of Administration Sciences, Universidad del Valle, Cali, Colombia. Business Administrator, Master’s Degree in Organizational Sciences, Universidad del Valle, Colombia.

, Universidad del Valle

Head Professor, Faculty of Administration Sciences, Universidad del Valle, Cali, Colombia. Metallurgical Engineer, Universidad Libre, Colombia, Doctor in Business Science, Universidad de Murcia, Spain.

, Servicio Nacional de Aprendizaje (SENA)

Professional G10, Servicio Nacional de Aprendizaje (SENA), Cali, Colombia. Industrial Engineer, Pontificia Universidad Javeriana, Doctor in Administration, Universidad del Valle, Colombia.


Abbas, A., Abdullah, S. H., & Saad, R. M. (2018). Affecting Factors to Intentions to Adoption of E-Commerce Technologies in SMEs of Pakistan. The Journal of Social Sciences Research, 147-155. Retrieved from

Aboelmaged, M., & Gebba, T. R. (2013). Mobile banking adoption: an examination of technology acceptance model and theory of planned behavior. International Journal of Business Research and Development, 2(1), 35-50. Retrieved from

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior (pp. 11-39). in J., Kuhl, J. Beckmann (Eds.), Action Control. Berlin, Germany: Springer Berlin Heidelberg. Retrieved from

Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.

Ajzen, I., & Fishbein, M. (1980), Understanding attitudes and predicting social behavior. Englewood Cliffs, USA: Prentice-Hall,

Al-Jabri, I. M., & Sohail, M. S. (2012). Mobile banking adoption: Application of diffusion of innovation theory. Journal of Electronic Commerce Research, 13(4), 379-391. Retrieved from

Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. Journal of the academy of marketing science, 40(1), 8-34. DOI 10.1007/s11747-011-0278-x

Baishya, K., & Samalia, H. V. (2019). Extending unified theory of acceptance and use of technology with perceived monetary value for smartphone adoption at the bottom of the pyramid. International Journal of Information Management, 102036.

BBVA. (2015). Ebook Banca móvil - Centro de Innovación BBVA. Retrieved from

Brown, I., Cajee, Z., Davies, D., & Stroebel, S. (2003). Cell phone banking: predictors of adoption in South Africa—an exploratory study. International journal of information management, 23(5), 381-394.

Cox, D. F. (1967). Risk taking and information handling in consumer behavior. Journal of Marketing, 32(3), 111-112. Retrieved from

DANE, 2018. Pobreza Monetaria y Multidimensional en Colombia 2018. Retrieved from

Danyali, A. A. (2018). Factors influencing customers’ change of behaviors from online banking to mobile banking in Tejarat Bank, Iran. Journal of Organizational Change Management, 31(6).

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. Retrieved from

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of the two theoretical models. Management Science, 35(8), 982-1003. Retrieved from

Elhajjar, S., & Ouaida, F. (2019). An analysis of factors affecting mobile banking adoption. International Journal of Bank Marketing, 38(2). DOI: 10.1108/IJBM-02-2019-0055

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, Vol. 18(1), 39-50. Retrieved from

Grandon, E. E., & Mykytyn Jr, P. P. (2004). Theory-based instrumentation to measure the intention to use electronic commerce in small and medium sized businesses. Journal of Computer Information Systems, 44(3), 44-57.

Hair, J. F. J., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis. New Jersey, USA: Prentice-Hall.

Harrison, D. A., Mykytyn Jr, P. P., & Riemenschneider, C. K. (1997). Executive decisions about adoption of information technology in small business: Theory and empirical tests. Information Systems Research, 8(2), 171-195. Retrieved from

Hasan, R., Lowe, B., & Petrovici, D. (2019). Consumer adoption of pro-poor service innovations in subsistence marketplaces. Journal of Business Research.

Hassan, H. E., & Wood, V. R. (2020). Does country culture influence consumers’ perceptions toward mobile banking? A comparison between Egypt and the United States. Telematics and Informatics, 46, 101312.

Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la investigación. Ciudad de México, México: Mc Graw Hill,

Joo, Y. B., & Kim, Y. G. (2004). Determinants of corporate adoption of e-Marketplace: an innovation theory perspective. Journal of Purchasing and Supply Management, 10(2), 89-101.

Kansal, P. (2016). Factors Affecting Adoption of Mobile Banking at the Bottom of the Pyramid in India. International Journal of Marketing & Business Communication, 5(3).

Khasawneh, M. H. A., & Irshaidat, R. (2017). Empirical validation of the decomposed theory of planned behaviour model within the mobile banking adoption context. International Journal of Electronic Marketing and Retailing, 8(1), 58-76. Retrieved from

Latinia, 2017. 9º informe anual sobre Banca Móvil y Redes Sociales. Retrieved from

Lee, K. C., & Chung, N., (2009). Understanding factors affecting trust in and satisfaction with mobile banking in Korea: a modified DeLone and McLean’s model perspective. Interacting with Computers, 21(5-6), 385–392.

López, A. M., Musonda, F., Sakao, T., & Kebir, N. (2017). Lessons learnt from designing PSS for Base of Pyramid. Procedia CIRP, 61, 623-628.

Lu, M. T., Tzeng, G. H., Cheng, H., & Hsu, C. C. (2015). Exploring mobile banking services for user behavior in intention adoption: using new hybrid MADM model. Service Business, 9(3), 541-565. DOI 10.1007/s11628-014-0239-9

Luarn, P., & Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile banking”, Computers in human behavior, 21(6), 873-891.

Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information systems research, 2(3), 173-191. Retrieved from

Mezghani, K., & Almansour, M. A. (2019). Study of Intentions to Use Cloud CRM Within Saudi SMEs: Integrating TAM and TPB Frameworks (pp. 33-50). In Mezghani, K., & Aloulou, W. (Ed.), Business Transformations in the Era of Digitalization. IGI Global. http://doi:10.4018/978-1-5225-7262-6.ch003

Mwangi, B. J., & Brown, I. (2015). A Decision Model of Kenyan SMEs’ Consumer Choice Behavior in Relation to Registration for a Mobile Banking Service: A Contextual Perspective. Information Technology for Development, 21(2), 229-252.

Narteh, B., Mahmoud, M. A., & Amoh, S. (2017). Customer behavioural intentions towards mobile money services adoption in Ghana. The Service Industries Journal, 37(7), 426-447.

Nasco, S. A., Toledo, E. G., & Mykytyn, P. P. (2008). Predicting electronic commerce adoption in Chilean SMEs. Journal of Business Research, 61(6), 697-705.

Pankomera, R., & Van Greunen, D. (2018). Challenges, benefits, and adoption dynamics of mobile banking at the base of the pyramid (BOP) Africa: A systematic review. African Journal of Information and Communication, 21, 21-49.

Pattansheti, M., Kamble, S. S., Dhume, S. M., & Raut, R. D. (2016). Development, measurement and validation of an integrated technology readiness acceptance and planned behaviour model for Indian mobile banking industry. International Journal of Business Information Systems, 22(3), 316-342.

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903.

Prahalad, C. K., & Hammond, A. (2002). Serving the world’s poor, profitably. Harvard business review, 80(9), 48-59.54. Retrieved from

Priya, R., Gandhi, A. V., & Shaikh, A. (2018). Mobile banking adoption in an emerging economy. Benchmarking: An International Journal, 25(2).

Püschel, J., J. A. Mazzon, and J. M. C. Hernandez. (2010). Mobile banking: Proposition of an integrated adoption intention framework. International Journal of Bank Marketing, 28(5), 389-409.

Riemenschneider, C. K., & McKinney, V. R. (2002). Assessing belief differences in small business adopters and non-adopters of web-based e-commerce. Journal of Computer Information Systems, 42(2), 101-107.

Riemenschneider, C. K., Harrison, D. A., & Mykytyn, P. P. (2003). Understanding IT adoption decisions in small business: integrating current theories. Information and Management, 40, (4), 269-285.

Riquelme, H. E., & Rios, R. E. (2010). The moderating effect of gender in the adoption of mobile banking”, International Journal of bank marketing, 28(5), 328-341.

Rivero, F. (2015). Informe Mobile en España y en el Mundo 2016. Retrieved from

Rogers, E. M. (1995), Diffusion of Innovations. New York, USA: The Free Press.

Santos, D. O., Veiga, R. T., & Souza, S. I. (2011). Mobile banking as a new channel of information spreading and a means of making new services available: a test of the theory of decomposed planned behavior. Perspectivas em Ciência da Informação, 16(4), 150-170.

Shaikh, A. A., & Karjaluoto, H. (2015). Mobile banking adoption: A literature review. Telematics and Informatics, 32(1), 129-142.

Shankar, A., & Kumari, P. (2016). Factors affecting mobile banking adoption behavior in India. The Journal of Internet Banking and Commerce, 21(1). Retrieved from

Sripalawat, J., Thongmak, M., & Ngramyarn, A. (2011). M-banking in metropolitan Bangkok and a comparison with other countries. Journal of computer information systems, 51(3), 67-76.

Taylor, S., & Todd, P. (1995). Decomposition and crossover effects in the theory of planned behavior: a study of consumer adoption intentions. International journal of research in marketing, Vol. 12(2), 137–155.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. Retrieved from

Verma, P., & Sinha, N. (2018). Integrating perceived economic wellbeing to technology acceptance model: The case of mobile based agricultural extension service. Technological forecasting and social change, 126, 207-216.

Woodson, T., Alcantara, J. T., & Do Nascimento, M. S. (2019). Is 3D printing an inclusive innovation?: An examination of 3D printing in Brazil. Technovation, 80, 54-62.

Wu, I., & Chen, J. (2005). An extension of trust and TAM model with TPB in the initial adoption of on-line tax: an empirical study. International Journal of Human-Computer Studies, 62, 784-808.

Yadav, R., Chauhan, V., & Pathak, G. S. (2015). Intention to adopt internet banking in an emerging economy: a perspective of Indian youth. International Journal of Bank Marketing, 33(4), 530-544.

| 119 |
How to Cite
Ruano-Arcos, L., Rodríguez-Orejuela, A., & Solís-Molina, M. (2020). Adoption of Mobile Banking by Microentrepreneurs at the Bottom of the Pyramid. Cuadernos De Administración, 36(67), 79-92.