Main Article Content


One of the most widespread media in the field of marketing for promoting products, services, and brands is advertising jingles; they are advertising messages made into songs. Their lyrics and music have been created to promote an advertisement or campaign. Thus, advertising jingles benefit from the advantages provided by music to generate positive emotions in potential customers, in addition to the ability to remember a product or brand. Given the few works that focus on the musical and emotional study of advertising jingles, this article explores the advantages provided by affective computing for the study of the emotionality of the music in a set of popular advertising jingles from the ‘80s and ‘90s, considering the acoustic properties of excitation and valence. A tool, called ANEMA (Analyzer of Emotions in Advertising Jingles), was developed to achieve this; it allows the segmentation of an audio track into different fragments where the acoustic properties of arousal and valence are extracted. This in turn allows determining the emotion associated with each fragment within the circumflex model or Russell´s five emotions model (happiness, excitement, anger, sadness, and relaxation) using the trigonometric relationship of acoustic properties. This study aims at serving as a reference regarding the design and evaluation of musical content associated with advertising jingles to stimulate the development of specific emotions in potential clients.

Gabriel Elías Chanchí Golondrino, Universidad de Cartagena

Assistant Professor, Systems Engineering Department, Faculty of Engineering, Universidad de Cartagena Cartagena, Colombia. Electronics and Telecommunications Engineer, Doctor in Telematic Engineering, Universidad del Cauca, Colombia.

Manuel Alejandro Ospina Alarcón, Universidad de Cartagena

Assistant Professor, Systems Engineering Department, Faculty of Engineering, Universidad de Cartagena Cartagena, Colombia. Control Engineer, Doctor in Engineering – Science and Technology of Materials, Universidad Nacional de Colombia, Medellín, Colombia.

Martín Emilio Monroy Ríos, Universidad de Cartagena

Associate Professor, Systems Engineering Department, Faculty of Engineering, Universidad de Cartagena Cartagena, Colombia. Systems Engineer, Technical University of Kirguizia, URSS, Doctor in Telematic Engineering, Universidad del Cauca, Colombia.

Chanchí Golondrino, G. E., Ospina Alarcón, M. A., & Monroy Ríos, M. E. (2022). Analysis of advertising jingles from the ‘80s and ‘90s through affective computing. Cuadernos De Administración, 38(73), e2011153.

Bai, J., Jun, P., Jinliang, S., Dedong, T., Ying, W., Jianqing, L., & Kan, L. (22-23 August, 2016). Dimensional Music Emotion Recognition by Valence-Arousal Regression (pp. 42-49). in Proceedings of 2016 IEEE 15th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC. Institute of Electrical and Electronics Engineers Inc., Palo Alto, CA, USA. DOI:

Baldasarri, S. (2016). Computación Afectiva: Tecnología y Emociones Para Mejorar La Experiencia de Usuario. Revista Institucional de La Facultad de Informática - UNLP (3), 14-15.

Brown, S., Ulrik, V. (2006). Musica and Manipulation On the Social Users and Social Control Music. Berghahn Books.

Chanchí, G., Córdoba, A. (2019). Análisis de Emociones y Sentimientos Sobre El Discurso de Firma Del Acuerdo de Paz En Colombia. Revista Ibérica de Sistemas e Tecnologias de Informação, E22, 95-107.

Espinosa Mirabet, S. (19-21 May, 2012). Análisis de Un Jingle Icónico ¿Por Qué Cuesta Tanto Crear Otro ‘Negrito de Cola-Cao’? (pp. 25-39). in Congreso Publiradio, Barcelona, España.

Florian, E., Wöllmer, M., & Schuller, B. (10-12 September, 2009). OpenEAR - Introducing the Munich Open-Source Emotion and Affect Recognition Toolkit (pp. 1-6). in Proceedings of 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops. ACII, Amsterdam, Netherlands. DOI:

Fernández Gómez, J. D. (2005). Aproximación Tipológica a La Música En Publicidad: De La Identidad Sonora Corporativa a La Comercialización de La Canción Publicitaria. Questiones Publicitarias, 1(10), 53-76. DOI:

Gillanders, C., Guillen, A. (2012). Música y Publicidad En El Aula de Secundaria. Revista Educativa Hekademos 12, 105-114.

Hammal, Z., Suarez, M. (2-5 September, 2013). Towards Context Based Affective Computing (pp. 802-802). in Proceedings of 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. ACII, Geneva, Switzerland. DOI:

Hargreaves, D., North, A. (2005). The Social Psychology of Music. Oxford University Press.

Jiang, J., Rickson, D., & Jiang, C. (2016). The Mechanism of Music for Reducing Psychological Stress: Music Preference as a Mediator. Arts in Psychotherapy 48, 62-68. DOI:

Juca Maldonado, J., Garcia Saltos, M. B., & Burgo Bencomo, O. (2018). La Computación Afectiva y Su Influencia En Las Interfaces Actuales Del Reconocimiento Facial. Revista Metropolitana de Ciencias Aplicadas 1(2), 28-35.

Kabadayi, A. (2014). Contributions of the ‘Counting Jingles’ to Children in Plays from Teachers’ Perspectives. Procedia - Social and Behavioral Sciences, 143, 458-62. DOI:

Kim, J., Lee, S., Kim, S., & Yoo, W. Y. (13-16 Febrary, 2011). Music Mood Classification Model Based on Arousal-Valence Values (pp. 292-295). in 13th International Conference on Advanced Communication Technology. ICACT., Gangwon, Korea (South).

López, A. (2017). La Efectividad de Los Jingles y Su Poder de Recordación. Razón y Palabra, 21(4_99), 197-211.

López Giraldo, A. (2-4 November, 2016). Los Jingles Originales Más Recordados Por Los Bogotanos En La Década de Los Ochenta, y Su Efectividad (pp. 1-5). in Humanidades digitales, diálogo de saberes y prácticas colaborativas en red. Cátedra UNESCO de comunicación, Bogotá, Colombia.

Malheiro, R., Panda, R., Gomes, P., & Paiva, R. P. (2018). Emotionally-Relevant Features for Classification and Regression of Music Lyrics. IEEE Transactions on Affective Computing, 9(2), 240-254. DOI:

Naser, D. S., Saha, G. (2021). Influence of Music Liking on EEG Based Emotion Recognition. Biomedical Signal Processing and Control, 64, 102251. DOI:

Nomura, T., Mitsukura, Y. (2015). EEG-Based Detection of TV Commercials Effects. Procedia Computer Science, 60(1), 131-140. DOI:

Palencia-Lefler, M. (2009). La Música En La Comunicación Publicitaria. Comunicación y Sociedad, 22(2), 89-108. DOI:

Paltoglou, G., Thelwall, M. (2013). Seeing Stars of Valence and Arousal in Blog Posts. IEEE Transactions on Affective Computing, 4(1), 116-123. DOI:

Porras, N. (2017). Análisis de Los Procesos Psicológicos de Percepción y Memoria En La Efectividad de Los Jingles Publicitarios. Revista de Comunicación y Salud, 7, 49-60. DOI:

Porras Velázquez, N. R. (2018). Percepción y Memoria En Los Jingles Publicitarios: Reflexiones Desde La Psicología de La Publicidad. Revista Electrónica Psyconex, 10(16), 1-19.

Rubio-Romero, J., Perlado-Lamo de Espinosa M., y Ramos- Rodriguez, M. (2019). La Música En La Publicidad Que Atrae a Los Jóvenes. Anuario Electrónico de Estudios en Comunicación Social “Disertaciones”, 12(2), 97-124. DOI:

Rudovic, O. O. (28-30 November, 2016). Machine Learning for Affective Computing and Its Applications to Automated Measurement of Human Facial Affect (pp. 1-1). in 2016 International Symposium on Micro-NanoMechatronics and Human Science (MHS). Institute of Electrical and Electronics Engineers Inc., Nagoya, Japan. DOI:

Sánchez-Porras, M. J. (2013). La Persuasión de La Música En La Publicidad. El Ejemplo Coca Cola. Revista Historia y Comunicación Social, 18, 349-57. DOI:

Sánchez-Porras, M. J. (2016). Música y Persuasión Publicitaria. Revista Opción, (12), 589-608.

Sánchez-Porras, M. J., & Rodrigo, E. (2017). Emotional Benefits of Coca-Cola Advertising Music. Procedia - Social and Behavioral Sciences, 237, 1444-1448. DOI:

Sánchez, V. (2015). Música y Publicidad. Una Aproximación Metodológica Al Análisis Músico-Audiovisual de Anuncios Televisivos. Revista de Comunicación Vivat Academia, 133, 86-101. DOI:

Sharma, H., Gupta, S., Sharma, Y., & Purwar, A. (5-7 March, 2020). A New Model for Emotion Prediction in Music (pp. 156-161). in 2020 6th International Conference on Signal Processing and Communication, ICSC. Institute of Electrical and Electronics Engineers Inc., Noida, India. DOI:

Shevy, M., Hung, K. (2013). Music in Television Advertising and Other Persuasive Media in Oxford University Press, The psychology of music in multimedia (1 ed1. Vol. 1, pp. 315-338). Oxford Scholarship. DOI:

Solarte, L. A., Sánchez, M., Chanchí, G. E., Durán, D. F., y Arciniegas J. L. (2016a). Dataset de Contenidos Musicales de Video, Basado En Emociones. Ingenierías USBMed, 7(1), 37-46. DOI:

Solarte, L. A., Sánchez, M., Chanchí, G. E., Durán, D. F., & Arciniegas J. L. (2016b). Video on Demand Service Based on the Inference of Emotions User. Sistemas y Telemática, 14(38), 31-47. DOI:

Received 2021-04-14
Accepted 2021-11-22
Published 2022-05-12